DEFINITION AND CALCULATION OF EFFECTIVE
AMBIPOL AR DIFFUSION COEFFICIENTS FOR A LAMINAR

MULTICOMPONENT IONIZED BOUNDARY LAYER

O. N. Suslov and G. A. Tirskii

Effective diffusion coefficients substantially facilitate solution of detailed problems for multi-
component boundary layers with frozen~in reactions in the flow and heterogeneous reactions
at the wall; they provide physically lucid correlation formulas and final equations for the
convective heat flow to the undamaged solid as well as for the mass loss rate or effective
erosion enthalpy if the walls are subject to thermochemical attack [1-5].

Here we extend the concept of effective diffusion coefficients to a partly ionized frozen-in multicom-~
ponent boundary layer with arbitrary reactions at the wall. We also derive the effective ambipolar diffusion
coefficients, which allow one to relate the diffusion fluxes to the concentration gradients in the generalized
form of Fick's law. These are represented in a form analogous to that for the effective diffusion coefficients
in neutral gases, which substantially facilitates the elucidation of complicated diffusion processes in a mul-
ticomponent flow in the presence of charged components.

We examine in detail the important particular case of electrons and ions with charges n and n+ 1; the
ahove types of effective diffusion coefficient are calculated exactly in explicit form without reference to
the boundary conditions. The formulas are new for the general case (n arbitrary).

We also calculate exactly the effective ambipolar Schmidt numbers for the outer boundary via the
asymptotic form for the solutions to the boundary-layer equations,

The sufficient conditions are derived for identity in the profiles for the relative concentrations, dif-
fusion fluxes, and effective ambipolar Schmidt numbers in a direction perpendicular to the boundary layer.
The general analogy between mass-transfer coefficients is used to convert the calculation of the effective
ambipolar coefficients at the wall to solution of a system of algebraic equations with and without influx
through the wall. This system is solved approximately for typical mixtures produced at the surfaces of
phenol-formaldehyde resins in ionized flows in the atmospheres of the earth and the other planets., Con-
siderable use is made of the results from [3, 5].

1. Tf there are no external electromagnetic forces and if we neglect the magnetic field induced by
charge separation, we get the following system of equations for a partly ionized frozen~in single-tempera-
ture asymptotically thin two~-dimensional stationary—laminar boundary layer:
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Here x and y are linear coordinates respectively along the surface and normal to it, u and v are the
projections of the mean~mass velocity vector v on these axes, v=0 (flow along a plane) or v=1 (flow over
an axially symmetric body), r(x) is the radius of the cross section of a body of rotation, ¢; is the mass con-
centration of component i, whose molar concentration is x;, Ji is the projection of the mass diffusion flux
for that component on the y axis, n; is the number of moles of that component in unit volume, n is the total
number of moles in unit volume, vj is the statistical mean speed of component i, whose molecular weight is
m; and whose charge is ej, m is the mean molecular weight of the mixture, q is the space charge, E is the
projection of the electric vector on the y axis, J is the same for the current-density vector, and j is the
same for the current vector, Ry is the universal gas constant, Ny is Avogadro's number, k is Boltzmann's
constant, N is the number of components in the mixture, whose pressure, dengity, and temperature are p,
p, and T, while p is the viscosity, A is the thermal conductivity, p is the mean specific heat, and Dy is
the thermal-diffusion coefficient for component i. The precise expressions for the resistance coefficients
ajj are dependent on the law of particle interaction, and they are as follows when neutral particles interact
in accordance with the Lennard-Jones potential (first approximation) [6]:
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where o; and €5 are the gas-kinetic interaction parameters and Qu®* (z;;) is a known function [6] that is
only slightly dependent on its argument for 7ij> 3. )

The first approximation is as follows [7] when charged particles interact via the inverse-square law:
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Here Dy is the binary diffusion coefficient,and In A;j is the Coulomb logarithm. We do not need more
accurate resistance coefficients in what follows.

System (1.1) contains 2N +6 equations for the 2N +6 unknown functions of u, v, p. p, T, E, ¢4, and Jj.
To this we add the usual boundary conditions and the initial conditions with respect to the x coordinate,
which will not be given here.

We convert (1,1) to dimensionless variables and give only Poisson's equation:
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Here E* is the characteristic electric-field strength, J is the thickness of the boundary layer, and €
is a small parameter proportional to the ratio of d (the Debye length) to 6. If (1.1) in dimensionless form
is solved as series in £, we get for the first terms in those series a system of equations that differ from
those of (1.1) only in that we must put
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Here pe is the density at the outer edge of the boundary layer, while Uy is the longitudinal velocity
there. This system (the external solution) is true outside the thin charged layer (for n>>d), which is the
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region of ambipolar diffusion, and the solution for the latter (internal solution) must be linked up with the
external solution in the space~charge region (if the particle mean-free path is much less than the Debyve
length) {8, 9].

Consider the case where there is no current at the wall. The diffusion equations in (1.1) then imply
that J= 0 across the boundary layer. We also assume that the wall is fairly cold and that complete re-
combination of the charged particles occurs there. We can then neglect the small change in charged-particle
concentration in the space~charge region in deriving the heat flux, friction, and mass~transfer coefficient
at the wall, and we can solve the problem in the ambipolar region by equating to zero the charged-particle
concentrations at the wall. The other boundary conditions are as usual [4, 10]. We must link up the two
solutions correctly if we are to find the distributions of the eleetric field and charged-particle concentra~
tions in the charged layer, which has to be done when there is a finite current,

Then Poisson's equation is replaced in (1.1) by the following equation in order to solve the problem
in the ambipolar region:
N

Z 256, =0 (1.5)
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which will serve as the condition for eliminating the field from the Stefan-Maxwell equations:
N
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It is more convenient to use Egs. (1.6) in describing convective processes, putting these in terms of
the gradients in the mass concentrations:
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It is convenient to have equations for the mass diffusion fluxes in terms of the electric-field strength
and the gradients in the mass concentrations. If we solve (1.7) for the fluxes, which are then substituted
into the diffusion equations in (1.1), we get a system of equations in partial derivatives that cannot be solved
for the first derivatives. The coefficients in this system take the form of complicated determinants and are
dependent on N{(N—1)/2 resistance coefficients (binary diffusion coefficients). The final system is difficult
to solve even by computer methods [4, 5], so we introduce the effective diffusion coefficients for the multi-
component ionized boundary layer as proposed in [1, 3] for the case of a mixture of neutral gases.

2. The effective diffusion coefficients are Dj* and D; for molar (numerical) and mass descriptions
of the diffusion, which we define in accordance with (1.6) and (1.7) as
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Then (1.6) and (1.7) become respectively as follows:
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We call p;* the mobility of charged particles of type i, and Einstein's equation relates u;* to D;*

{this equation has previously been used for an ion-electron-atom mixture). The relation of uj to Dj in (2.4)
is an extension of Einstein's equation to the case of mass description of the diffusion,

The following are the conditions for quasineutrality and absence of conduction current in the ambi-
polar region in the zeroth approximation (& =0):
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which allow us to eliminate E from (2.4) and to put these equations in the form of generalized Fick's laws:
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where the Di(a) {effective ambipolar diffusion ceefficients) by definition must be found from*

1 4 V(E)G(E) 2.7
D E) D(E) 2 D J(E) @.n

1 1 vit; 1 1 1J(B) .
D@ =5, T Y ®)c® [D(a)(E)_ D(E)] 7 (E=E)

N
E=— 2 Jk’ ¥ = @‘eﬁ-s 2= D) ca*Ve (2.8
k—~1 * k=t
We can put Egs. (2.7) in the single form
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If we substitute from (2.2) for D; into (2.9) and use the condition of quasineutrality, we get N equa-
tions for the D;@) in a form analogous to that for the effective diffusion coefficients in a neutral mixture:
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Then (2.6) and (2.10) allow us to put Eq. (1.7) as
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The ambipolar coefficients can be defined also in the molar description of the diffusion by analogy
with (2.6). In what follows we consider only the mass diffusion coefficients. The above various effective

*If a chemical symbol has to be introduced as an index, it will be shown in parentheses, e.g., Dy = D(E),
DEH2=D(E’ H,), etc.
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coefficients are dependent on the ratios of the C}IffllSlOl’l fluxes; in general, they can be derived only nu~-
merically for an N-component mixture. The Ajj " are zero only if there are no charged components; then
(2.10) becomes (2.2). To (2.10) we must add three relationships homogeneous with respect to the fluxes:

T R DOE® Ti (2.12)
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The system of (2.10) and (2.12) serves to define the N coefficients Di(“) and the N—1 ratios of the

diffusion fluxes, Only N +2 out of the N+ 3 equations in {2.10) and (2.12) are independent {the second equa~
tion in (2.12) has been used in writing (2.10)]. System {2.10}, (2.12) has a unique solution only if N = 3for
a plasma and N=2 for a neutral mixture; in these particular cases the D; and Di(a) are calculated via the
thermodynamic parameters before the problem is solved. The next section deals with the important particu-
lar case N=3 for an ionized mixture.

3. An ionized gas mixture consists of the three components E, 1M and I(nﬂ), which are producedvia
[ rE 2 I 4 (n+ DE  (a>0) AT+ E(n=0) (3.1)

Here A represents atoms, I represents ions, E represents electrons, and n is the degree of ioniza-
tion. The equilibrium constants show that usually

KEP>KPY,  a=0,1,...

80 ionization occurs in steps as the temperature is raised. First n=1 for nearly all the particles, then
n=2, and so on, so an jonized mixture from a given element virtually consists of only three components,
Then from the statement made at the end of section 1 we find from (2.10), (2.12) successively the ratios
of the diffusion fluxes and the various D;
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Equations (3.3} simplify considerably if we use
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We use (1.3) and (1.4) to simplify (3.4) and (3.6) further, which gives
(7, B)/ @n, por = @(n A1, B}/ an, npy = [m(E) [ m, o 1 3.7
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Also, (3.7) gives from (3.4) and (3.6) that

1/Dy=1/Dppy=[1 —2(E)an nu, 1/D(E)=(n+1)a(n, E)—na(n—+1, E) (3.8)
1/ D% =1/ DY =1] D@ (E) = 2(E){(n + 1) [(n + 2) 2 (E) — n]} g, oy (3.9)
In writing (3.8) and (3.9) we use the obvious estimate
nfr+)<zE)<@®+1)/0+2), >0 (3.10)
Then (3.4) for n=0 gives
D (A) = DO (1) = D@(E) = 2/ [a(E, A) + a(I, A)] (3.11)

From (3.9) with n=0 we get the well-known result
D@ (A) = D@ (I) = D9(E) = 2D(A, T) (3.12)
It is readily shown that we have for the molar description that
DY = D= D*e(E) (3-13)
with the values given by (3.4).

Then a ternary mixture (ionized gas) in the mass and molar descriptions resembles a binary mixture
of neutral gases in being described by a single diffusion coefficient, which is found from (3.4).

4. If the plasma contains four or more components, we can calculate the D; @ only after solving the
entire detailed problem; but in some important particular cases one can establish some properties of the
concentration distributions and D; @) that are not dependent on the boundary concentrations. Similar prop~
erties have been deduced [3] for mixtures of neutral gases.

We call components K and K' ones with similar or identical diffusion properties if we have
m (K) = m (K') (m(K) =m (K")),
a (K, h~a (K, i) (a(K, )=a (K, i) (4.1)
The following theorem may be proved via (2.9) and (4.1) by analogy with [3].

Theorem 4.1. If in a gas mixture we can distinguiish a group of neutral components with identical dif-
fusion properties, then D; and Dj @) for the components that do not fall in the group will not depend explicitly
on the diffusion fluxes for the components in this group.*

Thetheorem follows from (2.5) and (2.10).

Theorem 4.2, If a plasma has only one type of ions I, the various D; will not depend on (I, E), the
resistance coefficient between the electrons and ions.

As in [3], we convert (1.1) to the dimensionless parabolic variables (£, n), whereupon the generalized
Fick's laws, the condition for zero current, and the condition for quasineutrality take the forms

N

N

l ac. ej ej

Xi:‘W%L’ Z;ijov Z,,T.Cj=0, 8@ =
i =17 j=11

4
pD{®
S, = 4.2)

Here X; is a dimensionless diffusion flux [3]. In what follows we use the following numbering of the
components: neutral species are represented by values from 1 to Ny, ions by Ny + 1 to N—1, and electrons
by N. The theorem follows from (2.2), (2.7), (2.10), and the diffusion equation of (1.1) (we neglect thermal
diffusion).

Theorem 4.3. If all the ions in a plasma have identical diffusion properties [see (4.1)] and charges,
and if at the wall we have

€; = Ciyp =.0 f=N,+1,...N)

*The assertion in theorem 2.1 of [3] should be corrected: '"then the effective diffusion coefficients for all
components that do not fall in this group will not .., ."
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then the relative concentrations and fluxes for the ions are

L=/, Li=Xi/e,, (=Nptl.. N—1) 4.3)
{

while the effective Schmidt numbers 8; and effective ambipolar Schmidt numbers §; a) for the ions are

respectively equal throughout the thickness of the boundary layer:

i=2(1), L=I(1), 8;=38(), S@=8@() G=No+1..,N—1) (4.4)
Consequence 1. From (2.5) and (2.9) we have for the electrons
2(E) = nz () m(E)/ m(T), 1(E)=nl (Iym(E)/m(l)
S (E) = 8@ (1) = [v(1) S (E) —v(E) S(D}/ (n + 1) e (4.5)
where n is as above.
Consequence 2. We readily find from (2.2) and (2.9) that the Di{a) and Dj for all ccinponents apart

from the ions are not dependent on the ajj(i, i=Np+1, ..., N) (resistance coefficients between the charged
components).

5. Equations {1.2) and (2.5) allow us to eliminate the concentrations and fluxes of two components
from (1.7); let these be the electrons (subscript N) and type N—1 of the ions. Then the concentrations of
components 1 to N—2 can be represented as linear combinations of the dimensionless fluxes of these com-~
ponents. Let

N—g
Sh— DXy =t N-) (5.1)
7=1

Here the gy; and I are functions only of the concentrations and temperature. The following system is
implied by (1.1) and (5.1) when 5 is large [3]:

% _ oy | . (5.2)
T 2 8X; 9E M—a @) +n~n <Vt
F==1
The following is the asymptotic solution to (5.1) and (5.2) for 5 large:
N—2
X;= Z Tus €Xp (— A1), € =ey —;%‘ , dn° = CP%’L (P, 1~ w0} (5.3)
k=1
where yy; are constants to be determined and A, are the roots of the characteristic equation:
det [ hy; — Ad;;] =0, hij = —gj {5.4)
We assume that all the A > 0 {the X; must tend to zero for 5 —=), It follows [3, 5] that
'N
Xi=1uexp(—An°), A= [2 ijz‘j}e (5.5)

=1

for components that, at infinity, vanish from the structure of the coefficients 8ij-

Comparison of (5,5) with the first equation in (4.2) gives us simple equations for the following quan~
tities for all components that vanish at infinity:

SE?):M x[g_ijijL (5.8)

=1
Then some of the roots of (5.4) are found,and so the order of the latter is reduced.

As an example we consider the burning of a thermosetting resin in a flow of ionized air, The follow~
ing components are then released by the wall and are lost via the outer boundary [3]:

M (CO,.CN, HCN, G,, C;, N;, NO), 8i0, CO,, H, (5.7

We assume that the outer boundary has ions I (O, N*, NO™), atoms A (O and N), and electrons E.
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First from (5.6) we find the Se(a) for the components of (5.7). The smallest is

N
a8 (Ha, D), (5.8)

1 J

S (Hy) = |
7
These numbers are found from (5.4) for the components that do not vanish at infinity and are

S (1) = S (A) = SE7(E) = 57 (Hy) (5.9)

Then these numbers are equal for the components that do not vanish at the outer edge and are equal
to the value of (5.8) for the components that vanish at infinity.

The Se(a) at the outer edge are found before the entire boundary-value problem is solved; their values
facilitate elucidation of the diffusion in the boundary layer and provide a check on numerical calculations,
the more sosince it is difficult to compute these numbers at the outer edge because one has to divide the
concentration gradient by the diffusion flux, and each of these tends exponentially to zero.

6. Consider the D; @) at the wall on the basis that there we have complete recombination of dissocia-
tion products and neutralization of ionization products in the incident flow.

These conditions are usually met for Ty =3000°K and p= 107% atm:
Gy =0 (=Nyd+1, .., Ny..,N) (6.1)

Here the neutral species that do not vanish at the wall are numbered 1 to Nx. The numbering of the
other components has been described above.

First from (2.2) we readily find the D; for all components that vanish at infinity (subscript w is
omitted):
1

|

N, R
; =2z (i=Ny+1,..,N) (6.2)

J=1

k]

As at the wall for i > Nx we have
¢1/ ¢ (E) = (3c,] 0n) (3¢ (E) ] an) = J,D@(E) | (J (E) D) (6.3)
then (2.9) gives
D@(E)y=DE)[1 + (1 — D@/D)ele;] (=Np+1,, N—1) (6.4)
From (6.2) and (6.4) we have

D@ (E)/ D(E)=~ D/ D(E)=a(E, i)]a; ~107
(i=N*+1,...,N—1,i<N*) (6.5)

From (6.4) and (6.5) we find with less than 1% error for ions that
Ny
D,® =D, (1 + fel_) (2 xjai].)"l (=Npt+1,...,N—1) (6.6)
=1

From (2.9), (6.4), and (6.5) we find for atoms that vanish at the wall that

Ny .
Di<a) = Dz = (2 xjai]->—1 (i= N* +1,... Nn) (6’7)

G=1

The various D; have thus been ecalculated for i > Nx. From (2,7), (6.2), and (6.5) we find for neutral
species present in the body that

N—1
1 1 e; 1 i (6.8)
=t X o S
Dy i i © D ¥

The Dk(a) for k =Nx can be calculated only when we have found the ratios of the diffusion fluxes at
the wall. To find approximately the Dk(“) for k =N, we use the general analogy between the mass-transfer
coefficients that is derived from numerical and analytical solutions for particular cases of such boundary
layers [1, 11] with reasonably small influx from the wall:
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A D i AC1 ;
(25 e

where the »;; as functions of (Z/Si<a))e, (1/8 (a)j)e and influx @ (£, 0) have been found [5] and range from
0.1to 2.

Note that the (I/ Sk<a))e are found before the problem is solved (see section 5}. The Dk(a) calculated
below are only slightly dependent on nij. We substitute (6.9) into (2.10) to get a system of nounlinear equa-
tions, which may be solved by the method of [3]. Among the components k =N, there may be a group K
with identical diffusion properties. We give the numbers 1 to Nxx to components present at the wall that
do not fall in group K. If a decomposing plastic is involved, group K contains components with molecular
weights around 30 (O,, Ny, CO, CN, HCN, etc.).

Let H,, 8i0,, and CO, be components present at the wall that do not fall in group K. The following
is the algebraic system for the Dy @) with k =N« (see above for those for k > Ny) with allowance for group K:

N*%
Dia r D8 X
——~—D o = By + 2 Biitsu [ ch(a) ] _Ev, Bysts. z Dk{a}]
N--i
_ _ m (E) D9 %k 6.10
o [Pt (P B ) ) [ e

B, =alk, K){i 4™ Lge, m?}}) s By =alk, K)(bkj+sk3) m(@

Nuw
D S| 2 } g a&D | Tal& ) (m(E)
3( E xg [a(k K) i Y bk] - 1 a(K, k) + a(K, k) G(K, }i) m;
8= m(K) _m(K) % _ m(K))a(K, 7) _m{&)"
gl l:( n; )a(K!].) (1 my (K, I)J (1 m; >]
skagjg%%, B(K,K)=0, k<N, (6.11)

The system of (6.10), (6.11) has been written for the case where the components present at the wall
vanish at infinity, since this covers practically all cases of erosion of a plastic in a hot ionized gas flow.

In fact, group K accounts for over 70% of the mass of the gas at the body when the incident flow is air or
carbon dioxide, so

[e®] fesl<<ty o= 040yl F<Nyw, J=E. (6.12)
Then for such mixtures (k <Ny 4) we get in the zeroth approximation from (6.10)-(6.12) that
\ N, . . . N—1 ‘ . (6.13)
oo =006 K) = 2 e Bila(, K) DU — 3 ey fa i, K) DY
|4 o j=1+N,,

K= [Bij -+ a(f, K)(1 - e] ey (1 + ¢;/ )%, By =a(k, K) by
mim(K)y=1, a(i, E}<{0.01a;; (j=E)
DP=a(k, K) W, <k<N), DP=(-+e/e)a*k, K) W,<h<N)

The solution to (6.13) with ®ij=11is

N, N,
D%;u) =q"1 (lﬂ, K) e 2’ Cjebkja—l (]’ K) -+ i Z cjea_l (]1 K) X;k (6'14)
j=1+N, Fe=t N,

Yp = (L e/ ) by + esaz/ [ea (k, K)l,  A<<Ng,

The solution to (6.13) for %y; #1 is obtained with less than 7% error for all components k=1, ..., N x)
apart from H, simply by substituting (6.14) into the right side of (6,13). Then (6.10) gives the solution for
all k <Nx. The method of [3] may be used to obtain the solution to (6,10) in the general case. A four-
component mixture (atoms A, ions I, electrons E, and molecules M) gives us the following form (6.6), (6.7),
and (6.14) on the assumption that the first three vanish at the wall and the molecules at infinity:
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D1y =2D(I)=2a"1(I, M), D (A)=D(A)=a(A, M) (6.15)
D (M) = [1 —c, (1) (1 — 2a (A, M)/a (I, M))] a™*(A, M)

Equation (6.15) gives 5-7% error for [D @ (M)a (A, M)] when reference is made to the exact nu-
merical calculations of [5].

Numerical solutions [4, 5] show that the effective ambipolar Schmidt numbers are positive within the
boundary layer and vary from the result of section 6 at the wall to the result of section 5 at the outer edge
of the boundary layer.
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